# 算法

## Algorithms

4158 次查看

Coursera
• 完成时间大约为 4 个月
• 中级
• 英语

### 你将学到什么

Algorithms

Dynamic Programming

Greedy Algorithm

Divide And Conquer Algorithms

### 课程概况

Algorithms are the heart of computer science, and the subject has countless practical applications as well as intellectual depth. This specialization is an introduction to algorithms for learners with at least a little programming experience. The specialization is rigorous but emphasizes the big picture and conceptual understanding over low-level implementation and mathematical details. After completing this specialization, you will be well-positioned to ace your technical interviews and speak fluently about algorithms with other programmers and computer scientists.

About the instructor: Tim Roughgarden has been a professor in the Computer Science Department at Stanford University since 2004. He has taught and published extensively on the subject of algorithms and their applications.

### 包含课程

Divide and Conquer, Sorting and Searching, and Randomized Algorithms

The primary topics in this part of the specialization are: asymptotic ("Big-oh") notation, sorting and searching, divide and conquer (master
method, integer and matrix multiplication, closest pair), and randomized algorithms (QuickSort, contraction algorithm for min cuts).

Graph Search, Shortest Paths, and Data Structures

The primary topics in this part of the specialization are: data structures (heaps, balanced search trees, hash tables, bloom filters), graph
primitives (applications of breadth-first and depth-first search, connectivity, shortest paths), and their applications (ranging from de...

Greedy Algorithms, Minimum Spanning Trees, and Dynamic Programming

The primary topics in this part of the specialization are: greedy algorithms (scheduling, minimum spanning trees, clustering, Huffman codes)
and dynamic programming (knapsack, sequence alignment, optimal search trees).

Shortest Paths Revisited, NP-Complete Problems and What To Do About Them

The primary topics in this part of the specialization are: shortest paths (Bellman-Ford, Floyd-Warshall, Johnson), NP-completeness and what it
means for the algorithm designer, and strategies for coping with computationally intractable problems (analysis of heuristics, local search).

### 预备知识

Apple 广告
##### 声明：MOOC中国十分重视知识产权问题，我们发布之课程均源自下列机构，版权均归其所有，本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献！
• Coursera
• edX
• OpenLearning
• FutureLearn
• iversity
• Udacity
• NovoEd
• Canvas
• Open2Study
• ewant
• FUN
• IOC-Athlete-MOOC
• World-Science-U
• CourseSites
• opencourseworld
• ShareCourse
• gacco