Seaborn的统计数据可视化

Statistical Data Visualization with Seaborn

936 次查看
Rhyme
Coursera
  • 完成时间大约为 1.5 个小时
  • 中级
  • 英语
注:本课程由Coursera和Linkshare共同提供,因开课平台的各种因素变化,以上开课日期仅供参考

你将学到什么

Produce and customize various chart types with Seaborn

Apply feature selection and feature extraction methods with scikit-learn

Build a boosted decision tree classifier with XGBoost

课程概况

Welcome to this project-based course on Statistical Data Visualization with Seaborn. Producing visualizations is an important first step in exploring and analyzing real-world data sets. As such, visualization is an indispensable method in any data scientist’s toolbox. It is also a powerful tool to identify problems in analyses and for illustrating results. In this project, we will employ the statistical data visualization library, Seaborn, to discover and explore the relationships in the Breast Cancer Wisconsin (Diagnostic) data set. We will use the results from our exploratory data analysis (EDA) in the previous project, Breast Cancer Diagnosis – Exploratory Data Analysis to: drop correlated features, implement feature selection and feature extraction methods including feature selection with correlation, univariate feature selection, recursive feature elimination, principal component analysis (PCA) and tree based feature selection methods. Lastly, we will build a boosted decision tree classifier with XGBoost to classify tumors as either malignant or benign.

This course runs on Coursera’s hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and scikit-learn pre-installed.

Notes:
– You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want.
– This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

课程大纲

Project: Statistical Data Visualization with Seaborn

Welcome to this project-based course on Statistical Data Visualization with Seaborn. Producing visualizations is an important first step in exploring and analyzing real-world data sets. As such, visualization is an indispensable method in any data scientist's toolbox. It is also a powerful tool to identify problems in analyses and for illustrating results. In this project, we will employ the statistical data visualization library, Seaborn, to discover and explore the relationships in the Breast Cancer Wisconsin (Diagnostic) data set. We will use the results from our exploratory data analysis (EDA) in the previous project, Breast Cancer Diagnosis – Exploratory Data Analysis to: drop correlated features, implement feature selection and feature extraction methods including feature selection with correlation, univariate feature selection, recursive feature elimination, principal component analysis (PCA) and tree based feature selection methods. Lastly, we will build a boosted decision tree classifier with XGBoost to classify tumors as either malignant or benign.

课程项目

Project Overview

Importing Libraries and Data

Dropping Correlated Columns from Feature List

Classification using XGBoost (minimal feature selection)

Univariate Feature Selection

Recursive Feature Elimination with Cross-Validation

Plot CV Scores vs Number of Features Selected

Feature Extraction using Principal Component Analysis

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2020 MOOC.CN 慕课改变你,你改变世界