用Ploly和Python分析票房数据

Analyze Box Office Data with Plotly and Python

844 次查看
Rhyme
Coursera
  • 完成时间大约为 1.5 个小时
  • 初级
  • 英语
注:本课程由Coursera和Linkshare共同提供,因开课平台的各种因素变化,以上开课日期仅供参考

你将学到什么

Produce interactive data visualizations with Plotly Python

Use Plotly Python and Seaborn during EDA and feature engineering

课程概况

Welcome to this project-based course on Analyzing Box Office Data with Plotly and Python. In this course, you will be working with the The Movie Database (TMDB) Box Office Prediction data set. The motion picture industry is raking in more revenue than ever with its expansive growth the world over. Can we build models to accurately predict movie revenue? Could the results from these models be used to further increase revenue? We try to answer these questions by way of exploratory data analysis (EDA) and feature engineering. We will primarily use Plotly for data visualization. Plotly Python which is Plotly’s Python graphing library makes interactive, publication-quality graphs ready for both online and offline use.

This course runs on Coursera’s hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and scikit-learn pre-installed.

Notes:
– You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want.
– This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

课程大纲

Project: Analyze Box Office Data with Plotly and Python

Welcome to this project-based course on Analyzing Worldwide Box Office Revenue with Plotly and Seaborn. In this project you will be working with the The Movie Database (TMDB) Box Office Prediction data set. The motion picture industry is raking in more revenue than ever with its expansive growth the world over. Can we build models to accurately predict movie revenue? Could the results from these models be used to further increase revenue? We try to answer these questions by way of exploratory data analysis (EDA) and feature engineering. We will primarily use Plotly for data visualization. Plotly Python which is Plotly's Python graphing library makes interactive, publication-quality graphs ready for both online and offline use.

课程项目

Analyze Movie Release Dates

Preprocess Features

Create Features Based on Release Date

Use Plotly to Visualize the Number of Films Per Year

Number of Films and Revenue Per Year

Do Release Days Impact Revenue?

Relationship between Runtime and Revenue

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2020 MOOC.CN 慕课改变你,你改变世界