卫生信息学的数据科学

The Data Science of Health Informatics

349 次查看
约翰霍普金斯大学
Coursera
  • 完成时间大约为 11 个小时
  • 初级
  • 英语
注:本课程由Coursera和Linkshare共同提供,因开课平台的各种因素变化,以上开课日期仅供参考

你将学到什么

Articulate different forms of clinical and population level data.

Describe the data required to answer a healthcare information problem.

Distinguish between data questions and data queries when dealing with a healthcare information problem.

课程概况

Health data are notable for how many types there are, how complex they are, and how serious it is to get them straight. These data are used for treatment of the patient from whom they derive, but also for other uses. Examples of such secondary use of health data include population health (e.g., who requires more attention), research (e.g., which drug is more effective in practice), quality (e.g., is the institution meeting benchmarks), and translational research (e.g., are new technologies being applied appropriately). By the end of this course, students will recognize the different types of health and healthcare data, will articulate a coherent and complete question, will interpret queries designed for secondary use of EHR data, and will interpret the results of those queries.

课程大纲

Introduction to Databases and Data Types

In this module, we will begin by introducing and defining databases, and placing the role of databases within the context of clinical informatics. We will continue by introducing the common health data types such as demographics, diagnosis, medications, procedures, and utilization data. We will finish this module by reviewing the emerging health data such as lab orders/results, vital signs, social data, and patient-generated data.

Data Sources and Data Challenges

In this module, we review the data specifications extracted from insurance claims and electronic health records. We will then discuss the common challenges in using health data, specifically issues with data quality, data interoperability, and data system architectures. Finally, we will describe the “Big Data” challenges of health data and explain some of the data problems that may hinder analytical efforts.

Formulating Data Questions

With this understanding of the data available, it’s time to see how to turn questions you and your colleagues will have into queries the database can understand. Besides getting rules of thumb for doing this translation, you will also be introduced to three online tools available to test some of these skills. You will also watch an interview with Sam Meiselman, course instructor and the data manager in charge of the Johns Hopkins Enterprise Data Warehouse, who has to use these skills on a daily basis.

Real World Applications of Data Science in Health Informatics

To send home the recurring message on the challenges and art of translating questions into queries, you will see interviews with two professionals: One who comes from the data management side of the equation, and one who comes from the domain. They will give you perspectives that are both similar (the need to understand the problem for which the data are being retrieved) and different (the multiplicity of data available vs the richness of the domain problem).

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2020 MOOC.CN 慕课改变你,你改变世界