通过搜索解决问题

Resolución de problemas por búsqueda

850 次查看
墨西哥国立自治大学
Coursera
  • 完成时间大约为 16 个小时
  • 初级
  • 西班牙语
注:本课程由Coursera和Linkshare共同提供,因开课平台的各种因素变化,以上开课日期仅供参考

课程概况

El curso trata de resolución automática de problemas por medio de algoritmos de búsqueda.

Aprenderás a abstraer un problema como un grafo de estados-acciones y a dimensionar su complejidad por medio de la identificación de parámetros. Además, te mostraremos cómo analizar el consumo de recursos computacionales de los algoritmos para seleccionar o adaptar el más apropiado al problema.
Nos interesa que puedas aplicar los algoritmos a problemas concretos.
Te acompañaremos en la implementación de los algoritmos en el lenguaje de programación Python y te mostraremos algunos ejemplos de su aplicación a ciertos problemas modelo.
Al final podrás probar tus algoritmos en un espacio de búsqueda interesante: el resolver el cubo de Rubik.

课程大纲

Algoritmos de Búsqueda ciega

Conocerás los algoritmos de búsqueda no informada. Estos algoritmos pueden verse como building blocks para diseñar agentes inteligentes que resuelven problemas. Aprenderás a abstraer los problemas como grafos de estados-acciones y podrás tratar la solución de problemas de manera equivalente a encontrar rutas dentro de este grafo. Te mostraremos cómo utilizar el análisis asintótico para evaluar el desempeño de los algoritmos.

Algoritmos de Búsqueda ciega (parte 2)

Conocerás los algoritmos de búsqueda no informada. Estos algoritmos pueden verse como building blocks para diseñar agentes inteligentes que resuelven problemas. Aprenderás a abstraer los problemas como grafos de estados-acciones y podrás tratar la solución de problemas de manera equivalente a encontrar rutas dentro de este grafo. Te mostraremos cómo utilizar el análisis asintótico para evaluar el desempeño de los algoritmos.

Algoritmos de búsqueda informada

Aprenderás a incorporar conocimiento del dominio del problema para guiar a los algoritmos en dirección a la solución por medio de funciones heurísticas. Entenderás el efecto que tiene la selección de la heurística en la optimalidad de las rutas encontradas.

Algoritmos de búsqueda informada (parte 2)

Aprenderás a incorporar conocimiento del dominio del problema para guiar a los algoritmos en dirección a la solución por medio de funciones heurísticas. Entenderás el efecto que tiene la selección de la heurística en la optimalidad de las rutas encontradas.

Algoritmos de búsqueda metaheurísticos

Comprenderás la importancia de los algoritmos meta-heurísticos para enfrentar la complejidad de problemas grandes donde los algoritmos vistos en los módulos anteriores dejan de ser efectivos.

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2020 MOOC.CN 慕课改变你,你改变世界