密码学数学基础

Mathematical Foundations for Cryptography

596 次查看
科罗拉多大学系统
Coursera
  • 完成时间大约为 11 个小时
  • 初级
  • 英语
注:本课程由Coursera和Linkshare共同提供,因开课平台的各种因素变化,以上开课日期仅供参考

课程概况

Welcome to Course 2 of Introduction to Applied Cryptography. In this course, you will be introduced to basic mathematical principles and functions that form the foundation for cryptographic and cryptanalysis methods. These principles and functions will be helpful in understanding symmetric and asymmetric cryptographic methods examined in Course 3 and Course 4. These topics should prove especially useful to you if you are new to cybersecurity. It is recommended that you have a basic knowledge of computer science and basic math skills such as algebra and probability.

课程大纲

Integer Foundations

Building upon the foundation of cryptography, this module focuses on the mathematical foundation including the use of prime numbers, modular arithmetic, understanding multiplicative inverses, and extending the Euclidean Algorithm. After completing this module you will be able to understand some of the fundamental math requirement used in cryptographic algorithms. You will also have a working knowledge of some of their applications.

Modular Exponentiation

A more in-depth understanding of modular exponentiation is crucial to understanding cryptographic mathematics. In this module, we will cover the square-and-multiply method, Eulier's Totient Theorem and Function, and demonstrate the use of discrete logarithms. After completing this module you will be able to understand some of the fundamental math requirement for cryptographic algorithms. You will also have a working knowledge of some of their applications.

Chinese Remainder Theorem

The modules builds upon the prior mathematical foundations to explore the conversion of integers and Chinese Remainder Theorem expression, as well as the capabilities and limitation of these expressions. After completing this module, you will be able to understand the concepts of Chinese Remainder Theorem and its usage in cryptography.

Primality Testing

Finally we will close out this course with a module on Trial Division, Fermat Theorem, and the Miller-Rabin Algorithm. After completing this module, you will understand how to test for an equality or set of equalities that hold true for prime values, then check whether or not they hold for a number that we want to test for primality.

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2020 MOOC.CN 慕课改变你,你改变世界