用Python进行推理统计分析

Inferential Statistical Analysis with Python

335 次查看
密歇根大学
Coursera
  • 完成时间大约为 10 个小时
  • 中级
  • 英语, 韩语
注:本课程由Coursera和Linkshare共同提供,因开课平台的各种因素变化,以上开课日期仅供参考

你将学到什么

Determine assumptions needed to calculate confidence intervals for their respective population parameters.

Create confidence intervals in Python and interpret the results.

Review how inferential procedures are applied and interpreted step by step when analyzing real data.

Run hypothesis tests in Python and interpret the results.

课程概况

In this course, we will explore basic principles behind using data for estimation and for assessing theories. We will analyze both categorical data and quantitative data, starting with one population techniques and expanding to handle comparisons of two populations. We will learn how to construct confidence intervals. We will also use sample data to assess whether or not a theory about the value of a parameter is consistent with the data. A major focus will be on interpreting inferential results appropriately.

At the end of each week, learners will apply what they’ve learned using Python within the course environment. During these lab-based sessions, learners will work through tutorials focusing on specific case studies to help solidify the week’s statistical concepts, which will include further deep dives into Python libraries including Statsmodels, Pandas, and Seaborn. This course utilizes the Jupyter Notebook environment within Coursera.

课程大纲

WEEK 1 - OVERVIEW & INFERENCE PROCEDURES

In this first week, we’ll review the course syllabus and discover the various concepts and objectives to be mastered in weeks to come. You’ll be introduced to inference methods and some of the research questions we’ll discuss in the course, as well as an overall framework for making decisions using data, considerations for how you make those decisions, and evaluating errors that you may have made.

On the Python side, we’ll review some high level concepts from the first course in this series, Python’s statistics landscape, and walk through intermediate level Python concepts. All of the course information on grading, prerequisites, and expectations are on the course syllabus and you can find more information on our Course Resources page.

WEEK 2 - CONFIDENCE INTERVALS

In this second week, we will learn about estimating population parameters via confidence intervals. You will be introduced to five different types of population parameters, assumptions needed to calculate a confidence interval for each of these five parameters, and how to calculate confidence intervals. Quizzes will appear throughout the week to test your understanding. In addition, you’ll learn how to create confidence intervals in Python.

WEEK 3 - HYPOTHESIS TESTING

In week three, we’ll learn how to test various hypotheses - using the five different analysis methods covered in the previous week. We’ll discuss the importance of various factors and assumptions with hypothesis testing and learn to interpret our results. We will also review how to distinguish which procedure is appropriate for the research question at hand. Quizzes and a peer assessment will appear throughout the week to test your understanding.

WEEK 4 - LEARNER APPLICATION

In the final week of this course, we will walk through several examples and case studies that illustrate applications of the inferential procedures discussed in prior weeks. Learners will see examples of well-formulated research questions related to the study designs and data sets that we have discussed thus far, and via both confidence interval estimation and formal hypothesis testing, we will formulate inferential responses to those questions.

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2020 MOOC.CN 慕课改变你,你改变世界