多变量微积分 I:概念

897 次查看
土耳其科驰大学
Coursera
  • 完成时间大约为 22 个小时
  • 混合难度
  • 其他, 英语
注:本课程由Coursera和Linkshare共同提供,因开课平台的各种因素变化,以上开课日期仅供参考

课程概况

Ders çok değişkenli fonksiyonlardaki ikili dizinin birincisidir. Burada çok değişkenli fonksiyonlardaki temel türev ve entegral kavramlarını geliştirmek ve bu konulardaki problemleri çözmekteki temel yöntemleri sunmaktadır. Ders gerçek yaşamdan gelen uygulamaları da tanıtmaya önem veren “içerikli yaklaşımla” tasarlanmıştır.

Bölümler
Bölüm 1: Genel Konular ve Düzlemdeki Vektörler
Bölüm 2: Uzayda Vektörler, Doğrular ve Düzlemler; Vektör Fonksiyonları
Bölüm 3: Düzlem Eğrilerinden Hatırlatmalar ve Uzay Eğrileri, İki Değişkenli ve İkinci Derece Fonksiyonlar ve Karşıt Gelen Yüzeyler
Bölüm 4: Özel Yapıdaki İki Değişkenli Olarak Karmaşık Fonksiyonlar, İki Değişkenli Fonksiyonlarda Kısmi Türev ve İki Katlı Entegralin Temel Tanımları; Limit Kavramının Gerekliliği ve Anlatımı
Bölüm 5: Türev Hesaplama Yöntemleri
Bölüm 6: Türev Uygulamaları
Bölüm 7: İki Katlı Entegraller ve Uygulamaları
———–
The course is the first of the sequence of calculus of multivariable functions. It develops the fundamental concepts of derivatives and integrals of functions of several variables, and the basic tools for doing the relevant calculations. The course is designed with a “content-based” approach, i. e. by solving examples, as many as possible from real life situations.

Chapters
Chapters 1: General Topics and Vectors in the Plane
Chapters 2: Vectors in Space, Lines and Planes; Vector Functions
Chapters 3: Reminders of Plane Curves and Space Curves, Quadratic Functions and Variables, Surfaces
Chapters 4: Special Two Variables Complex Functions, the Basic Definition of Partial Derivatives and Two Storey Integrals in Two Unknown Functions ; Necessity and Details of Limits
Chapters 5: Methods of Derivative Calculations
Chapters 6: Application of Derivatives
Chapters 7: Two Storey Integrals and Applications
———–
Kaynak: Attila Aşkar, “Çok değişkenli fonksiyonlarda türev ve entegral”. Bu kitap dört ciltlik dizinin ikinci cildidir. Dizinin diğer kitapları Cilt 1 “Tek değişkenli fonksiyonlarda türev ve entegral”, Cilt 3: “Doğrusal cebir” ve Cilt 4: “Diferansiyel denklemler” dir.

Source: Attila Aşkar, Calculus of Multivariable Functions, Volume 2 of the set of Vol1: Calculus of Single Variable Functions, Volume 3: Linear Algebra and Volume 4: Differential Equations. All available online starting on January 6, 2014

课程大纲

Genel Konular ve Düzlemdeki Vektörler

Fonksiyon kavramı: girdi – çıktı, bir değerin diğerine gönderimi, çizit, ve dönüşüm gösterimleri. Çok değişkenli fonksiyonların sınıflandırılması: uzayda eğriler, yüzeyler ve vektör alanları. Düzlemde karteziyen ve dairesel koordinatların, uzayda karteziyen, silindir ve küresel koordinatların tanıtılması. Fonksiyonların açık, kapalı ve parametrelerle gösterilmesi. Vektörler: düzlemde geometriden cebire. Düzlemde toplama, bir sayıyla çarpma, iç çarpım ve vektör çarpımı. Bu işlemlerin üç boyuta genellenmesi ve üçlü vektör çarpımları. Bu kavramların geometrideki anlamları ve uygulamaları. Uzayda doğrular ve düzlemler.

Uzayda Vektörler, Doğrular ve Düzlemler; Vektör Fonksiyonları

Uzayda eğriler: tek bağımsız ve üç bağımlı değişkenle vektör fonksiyonları. Düzlemdeki temel eğrilerin hatırlatılması ve uzaydaki bazı önemli eğrilerin tanıtılması. Düzlemde yay uzunluğu, eğrilik ile teğet ve dik vektörlerin hatırlatılması. Uzayda yay uzunluğu, teğet, dik ve ikinci dik (binormal) vektörleriyle eğrilik ve burulmanın tanımlanması. Uzaydaki yörüngelerde hız ve ivme.

Düzlem Eğrilerinden Hatırlatmalar ve Uzay Eğrileri, İki Değişkenli ve İkinci Derece Fonksiyonlar ve Karşıt Gelen Yüzeyler

Uzayda yüzeyler: iki bağımsız ve tek bağımlı değişkenle tanımlanan sayısal fonksiyonlar. Yüzeylerin anlaşılması ve temel yüzeylerde çizimler: perspektif görünüm, eşit değer eğrileri ve kesitlerin çizimi. İki değişkenli ikinci derece kuvvet fonksiyonlarıyla verilen temel yüzeyler. Silindir yüzeyleri ve dönel yüzeyler. İki değişkenli özel bir yapı olarak karmaşık değerli fonksiyonlar. Mathematica, Mathlab, Ghostview… gibi yazılımlarla bilgisayarda çizimlerden örnekler.

Özel Yapıdaki İki Değişkenli Olarak Karmaşık Fonksiyonlar, İki Değişkenli Fonksiyonlarda Kısmi Türev ve İki Katlı Entegralin Temel Tanımları; Limit Kavramının Gerekliliği ve Anlatımı

Tek değişkenli fonksiyonlarda türev ve entegralin hatırlatılması. Buradaki ana kavramların İki değişkenli fonksiyonlarda “kısmi türev” ve “iki katlı entegral” olarak genellenmesi. Kısmi türev ve iki katlı entegralin geometrideki anlamları. Temel tanımları pekiştiren az sayıda kısmi türev ve iki katlı entegrallerin hesabı.

Türev Hesaplama Yöntemleri

İki değişkenli sayısal açık fonksiyonlarla tanımlanan yüzeyde teğet düzlem ve diferansiyel. Zincirleme türev yöntemi ve tam türev. Yöne göre türev. Gradyan. Koordinat dönüşümü ve Jakobiyan. Taylor serileri. Kritik noktalar, en büyük ve en küçük değerler. Türev hesaplamalarının üç ve “n” değişkenli fonksiyonlara genellenmesi.

Türev Uygulamaları

İki değişkenli sayısal açık fonksiyonlarla tanımlanan yüzeyde teğet düzlem ve diferansiyel. Zincirleme türev yöntemi ve tam türev. Yöne göre türev. Gradyan. Koordinat dönüşümü ve Jakobiyan. Taylor serileri. Kritik noktalar, en büyük ve en küçük değerler. Türev hesaplamalarının üç ve “n” değişkenli fonksiyonlara genellenmesi.

İki Katlı Entegraller ve Uygulamaları

İki katlı entegrallerde hesaplama örnekleri. Kartezyen ve dairesel koordinatlarda hesaplamalar, uygulamalardan örnekler.

Dönem Sonu Sınavı (Final Exam)

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2020 MOOC.CN 慕课改变你,你改变世界