概率:分布模型与连续随机变量

Probability: Distribution Models & Continuous Random Variables

Learn about probability distribution models, including normal distribution, and continuous random variables to prepare for a career in information and data science.

257 次查看
普渡大学
edX
  • 完成时间大约为 6
  • 中级
  • 英语
注:因开课平台的各种因素变化,以上开课日期仅供参考

你将学到什么

Probability concepts and rules

Some of the most widely used probability models with continuous random variables

How distribution models we have encountered connect with Normal distribution

Advanced probability topics

课程概况

In this statistics and data analysis course, you will learn about continuous random variables and some of the most frequently used probability distribution models including, exponential distribution, Gamma distribution, Beta distribution, and most importantly, normal distribution.

You will learn how these distributions can be connected with the Normal distribution by Central limit theorem (CLT). We will discuss Markov and Chebyshev inequalities, order statistics, moment generating functions and transformation of random variables.

This course along with the recommended pre-requisite,Probability: Basic Concepts & Discrete Random Variables,will you give the skills and knowledge to progress towards an exciting career in information and data science.

The Center for Science of Information, a National Science Foundation Center, supports learners by offering free educational resources in information science.

课程大纲

Units 1 - 6 are available in "416.1x Probability: Basic Concepts & Discrete Random Variables"

Unit 7: Continuous Random Variables
In this unit, we start from the instruction of continuous random variables, then discuss the joint density/CDF and properties of independent continuous random variables.

Unit 8: Conditional Distributions and Expected Values
Conditional distributions for continuous random variables, expected values of continuous random variables, and expected values of functions of random variables.

Unit 9: Models of Continuous Random Variables
In this unit we will discuss four common distribution models of continuous random variables: Uniform, Exponential, Gamma and Beta distributions.

Unit 10: Normal Distribution and Central Limit Theorem (CLT)
Introduction to Normal distribution and CLT, as well as examples of how CLT can be used to approximate models of continuous uniform, Gamma, Binomial, Bernoulli and Poisson.

Unit 11: Covariance, Conditional Expectation, Markov and Chebychev Inequalities

Unit 12: Order Statistics, Moment Generating Functions, Transformation of RVs

预备知识

Basic Calculus 1&2, and Calculus 3 (including an understanding of double integers) 
Complete this course first: 416.1x Probability: Basic Concepts & Discrete Random Variables

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2020 MOOC.CN 慕课改变你,你改变世界