制造工艺基础

Fundamentals of Manufacturing Processes

Learn the technologies that manufacture products we use every day, and the fundamental principles required to take processes to high-volume production.

391 次查看
麻省理工学院
edX
  • 完成时间大约为 10
  • 普通(中级)
  • 英语
注:因开课平台的各种因素变化,以上开课日期仅供参考

你将学到什么

Manufacturing processes in detail: machining, injection molding, casting, thermoforming, sheet metal forming, 3D printing, and more

Overarching principles: rate, quality, cost, flexibility, sustainability

How to apply design for manufacturing principles, plan a multi-step process, and envision an automated manufacturing system for complex products

Emerging technologies including robotics, connected machines, and their implications on the future of manufacturing

课程概况

Have you wondered how something was manufactured? Do you want to learn what it takes to turn your design into a finished product? This course introduces a wide range of manufacturing processes including machining, injection molding, and 3D printing; and explains the fundamental principles and practices of manufacturing at scale.

For each process, 2.008x explains the underlying physical principles, provides several practical examples and demonstrations, and summarizes design for manufacturing principles. Lectures are also included on cost estimation, quality and variation, robotics, and sustainability. Together, this knowledge will enable you to plan a manufacturing process for a multi-part product, make quantitative estimates of cost and throughput, and recognize important constraints and tradeoffs.

Whether you may be an engineer, entrepreneur, or from another field—by completing 2.008x you will gain the understanding needed to assess a wide variety of manufacturing techniques, identify potential improvements, and confidently pursue the scale-up of innovative products.

课程大纲

Week 1: Introduction and Process Planning
An introduction to the scope and significance of manufacturing worldwide, followed by an overview of the structure of 2.008x and highlights of key topics.  Then, a framework is presented for planning manufacturing processes, and for evaluating process performance based on four key attributes.

Week 2: Machining
This module describes machining, the most common process of material removal.  Chapters address the mechanics of material deformation, estimates of material removal rate and cutting forces, practical aspects of turning and milling operations, and methods of machining advanced materials and complex parts.

Week 3: Injection Molding
Injection molding is the most widely used plastics manufacturing process.  Chapters of this module describe the process physics, rate-limiting steps, process parameters, thermoplastic materials, mold tooling design, and guidelines for defect prevention.  Examples include molding of toy bricks, cups, and plastic furniture.

Week 4: Thermoforming and Sheet Metal Forming
These modules address sheet forming of plastics and metals.  Chapters describe the materials and process considerations, rate- and geometry-limiting aspects including springback and tearing, and explain various uses including manufacturing of plastic packaging and aluminum beverage cans.  A supplement to the thermoforming module introduces other polymer forming processes including those for plastic bottles, bags, and large containers.

Week 5: Casting
This module introduces casting, whereby a metal part is made by solidification within a mold.  Modules describe sand casting, die casting, and investment casting processes; rate-limiting steps and factors governing part microstructure, quality, and cost are also analyzed.

Week 6: Additive Manufacturing
We first introduce the spectrum of additive manufacturing (AM) technologies, its key applications, and reasons for its rapid growth and significance.  Next, we focus in-depth on the three most prevalent AM processes: extrusion of polymers and composites (i.e., FFF/FDM), photopolymerization (i.e., stereolithography or SLA), and selective laser melting (SLM) of metals.

Week 7: Quality and Variation
This module explains basic statistical methods for analyzing, monitoring, and controlling process variation, including the use of control charts.  The critical differences between variation, tolerances, and quality are explained; and principles of precision metrology are introduced.

Week 8: Manufacturing Cost
Understanding the cost of manufacturing a part or product, and its relationship to the process details and production volume, is essential to effective scale-up.  This module presents a methodology for estimating manufacturing cost, and examples discuss the cost of making toy bricks, window glass, and smartphones.

Week 9: Sustainability and Robotics
First, we discuss the implications of the energy consumption of manufacturing, and of the product life cycle life cycle.  Second, the robotics module introduces several types of robots used in manufacturing, compares their performance, and illustrates how robotics can improve production efficiency and quality.

Week 10: The Future of Manufacturing and Conclusion
To conclude, this module provides a brief summary of 2.008x, highlights important emerging manufacturing technologies, and presents the perspectives of instructors and guests on the exciting future of manufacturing.

预备知识

secondary school (high school) math and physics
Calculus I
knowledge or willingness to simultaneously study basic principles of mechanics of material, fluid mechanics, and thermodynamics and heat transfer

Programming Category (English)728x90
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2019 MOOC.CN 慕课改变你,你改变世界