成功评估预测模型

Successfully Evaluating Predictive Modelling

Gain an in-depth understanding of evaluation and sampling approaches for effective predictive modelling using Python.

845 次查看
爱丁堡大学
edX
  • 完成时间大约为 6
  • 高级
  • 英语
注:因开课平台的各种因素变化,以上开课日期仅供参考

你将学到什么

Analyse the accuracy and quality of a predictive model

Implement effective measures and strategies to measure models

Evaluate datasets to determine appropriateness and strength of techniques

Understand the techniques used in recommender systems

课程概况

A predictive exercise is not finished when a model is built. This course will equip you with essential skills for understanding performance evaluation metrics, using Python, to determine whether a model is performing adequately.

Specifically, you will learn:

Appropriate measures that are used to evaluate predictive models
Procedures that are used to ensure that models do not cheat through, for example, overfitting or predicting incorrect distributions
The ways that different model evaluation criteria illustrate how one model excels over another and how to identify when to use certain criteria

This is the foundation of optimising successful predictive models. The concepts will be brought together in a comprehensive case study that deals with customer churn. You will be tasked with selecting suitable variables to predict whether a customer will leave a telecommunications provider by looking into their behaviour, creating various models, and benchmarking them by using the appropriate evaluation criteria.

课程大纲

Week 1: Evaluation Metrics and Feature Selection
Week 2: Feature Selection and Correlation Analysis
Week 3: Feature Selection with Decomposition Techniques
Week 4: Sampling Techniques
Week 5: Resampling Techniques
Week 6: Case Study

预备知识

You should be familiar with an undergraduate level, or have a background, in mathematics and statistics. Previous experience with a procedural programming language is beneficial (e.g. Python, C, Java, Visual Basic).

Learners pursuing the MicroMasters programme are strongly recommended to complete PA1.1x Introduction to Predictive Analytics using Python on the verified track prior to undertaking this course.

常见问题

What type of activities will I complete on the course?
This course foregrounds self-directed and active ways of learning: reading, coding in Python, knowledge check quizzes and peer discussion. In addition, the course features videos that demonstrate relevant predictive analysis techniques and concepts.

What software will I be required to use?
All coding activities on this course will be hosted on Vocareum. You will be able to access this free software directly within the edX platform. There is no requirement to purchase further software in order to complete this course.

What do I need to complete the course?
For successful completion of this course, you will need access to a computer or mobile device and a reliable internet connection.

What is the University of Edinburgh Accessibility Guidance?

The University of Edinburgh is committed to providing online information and services accessible to all. Edx provide an accessibility statement which is available via the footer of all edx.org pages and includes an 'Accessibility Feedback' form which allows Learners to register feedback directly with the edx. Courses created by the University of Edinburgh contain an Accessibility Statement which addresses equality of access to information and servicesandis available via the 'Support' page.

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2020 MOOC.CN 慕课改变你,你改变世界