聚类分析

Cluster Analysis

Learn how to conduct a cluster analysis to discover important patterns in student behavior using the popular Weka data mining toolkit.

299 次查看
德州大学阿灵顿分校
edX
  • 完成时间大约为 3
  • 中级
  • 英语
注:因开课平台的各种因素变化,以上开课日期仅供参考

你将学到什么

Understand clustering and its use in learning analytics

How to use the Weka toolkit to conduct cluster analysis

Popular clustering algorithms (k-means, hierarchical clustering, EM clustering)

How to interpret cluster analysis results

How to use clustering in learning analytics to solve problems, such as improving student learning experiences and learning outcomes, increasing retention, or providing personalized feedback and support to students

How to determine an optimal number of clusters for the analysis

课程概况

In this course, you will learn the basics of cluster analysis, one of the most popular data mining methods for the discovery of patterns in learning data, and its application in learning analytics.

Cluster analysis enables the identification of common, archetypal patterns of student interactions, which can lead to better understanding of student learning behaviors and provision of personalized feedback and interventions.

This course will have a strong hands-on component, as you will learn how to conduct a cluster analysis using the popular Weka data mining toolkit.

We will cover K-means and Hierarchical clustering techniques, which are two simple, yet widely used, cluster analysis methods. We will also review some of the published learning analytics studies that adopted cluster analysis and learn how to interpret the cluster analysis results.

Finally, we will also examine some of the more advanced techniques and identify certain practical challenges with cluster analysis, such as the selection of the optimal number of clusters and the validation of cluster analysis results.

课程大纲

Week 1: Introduction
Lectures:

Introduction to unsupervised machine learning methods
Introduction to clustering
Overview of clustering uses for learning analytics

Labs:

Introduction to Weka toolkit

Week 2: Overview of k-means and hierarchical clustering methods
Lectures:

K-means clustering theory
K-means full example
Hierarchical clustering theory
Hierarchical clustering full example

Labs:

Conducting k-means clustering using Weka
Conducting hierarchical clustering using Weka

Week 3: Practical considerations
Lectures:

How to choose the number of clusters
How to interpret clustering results
Overview of more advanced clustering methods

Labs:

Real-world cluster analysis walkthrough

预备知识

We highly recommend that you take the previous course in the series before beginning this course:
Social Network Analysis

This course is intended for those who have a bachelor’s degree and are interested in developing learning and data science skills for employment in education, corporate, nonprofit, and military sectors. Experience with programming and statistics will be beneficial to participants.

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2020 MOOC.CN 慕课改变你,你改变世界