使用Microsoft R分析大数据

Analyzing Big Data with Microsoft R

Learn how to use Microsoft R Server to analyze large datasets using R, one of the most powerful programming languages.

900 次查看
微软
edX
  • 完成时间大约为 4
  • 中级
  • 英语
注:因开课平台的各种因素变化,以上开课日期仅供参考

你将学到什么

Read data from flat files into R’s data frame object, investigate the structure of the dataset and make corrections, and store prepared datasets for later use

Prepare and transform the data

Calculate essential summary statistics, do crosstabulation, write your own summary functions, and visualize data with the ggplot2 package

Build predictive models, evaluate and compare models, and generate predictions on new data

课程概况

The open-source programming language R has for a long time been popular (particularly in academia) for data processing and statistical analysis. Among R’s strengths are that it’s a succinct programming language and has an extensive repository of third party libraries for performing all kinds of analyses. Together, these two features make it possible for a data scientist to very quickly go from raw data to summaries, charts, and even full-blown reports. However, one deficiency with R is that traditionally it uses a lot of memory, both because it needs to load a copy of the data in its entirety as a data.frame object, and also because processing the data often involves making further copies (sometimes referred to as copy-on-modify). This is one of the reasons R has been more reluctantly received by industry compared to academia.

The main component of Microsoft R Server (MRS) is the RevoScaleR package, which is an R library that offers a set of functionalities for processing large datasets without having to load them all at once in the memory. RevoScaleR offers a rich set of distributed statistical and machine learning algorithms, which get added to over time. Finally, RevoScaleR also offers a mechanism by which we can take code that we developed on our laptop and deploy it on a remote server such as SQL Server or Spark (where the infrastructure is very different under the hood), with minimal effort.

In this course, we will show you how to use MRS to run an analysis on a large dataset and provide some examples of how to deploy it on a Spark cluster or a SQL Server database. Upon completion, you will know how to use R for big-data problems.

Since RevoScaleR is an R package, we assume that the course participants are familiar with R. A solid understanding of R data structures (vectors, matrices, lists, data frames, environments) is required. Familiarity with 3rd party packages such as dplyr is also helpful.

edX offers financial assistance for learners who want to earn Verified Certificates but who may not be able to pay the fee. To apply for financial assistance, enroll in the course, then follow this link to complete an application for assistance.

课程大纲

Familiarity with R

预备知识

Familiarity with R

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2020 MOOC.CN 慕课改变你,你改变世界