线性代数(第1部分)

Algèbre Linéaire (Partie 1)

Un MOOC francophone d’algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

798 次查看
洛桑联邦理工学院
edX
  • 完成时间大约为 4
  • 初级
  • 法语
注:因开课平台的各种因素变化,以上开课日期仅供参考

你将学到什么

de définir les concepts théoriques introduits en cours et d'en donner des exemples illustratifs ;

d'appliquer la théorie matricielle à la résolution de systèmes linéaires et d’interpréter les résultats obtenus ;

de déterminer si un ensemble muni d'une addition et d'une multiplication par scalaires est un espace vectoriel (ou si un sous-ensemble d'un espace vectoriel est un sous-espace vectoriel) ;

de maîtriser les diverses notions relatives à la théorie des espaces vectoriels (e.g. bases, dimensions, sous-espaces).

课程概况

Vous voulez apprendre l’algèbre linéaire, un précieux outil complémentaire à vos connaissances acquises durant vos études en économie, ingénierie, physique, ou statistique? Ou simplement pour la beauté de la matière? Alors ce cours est fait pour vous! Outre remplir le rôle d’outil dans les différentes branches mentionnées ci-dessus (permettant la résolution de problèmes concrets), l’algèbre linéaire, qui capture l’essence des mathématiques -à savoir, l’algèbre et la géométrie- vous introduira au monde plus abstrait des mathématiques.

Proposé comme complément de cours aux ingénieurs de première année à l’Ecole Polytechnique Fédérale de Lausanne, ce MOOC (composé de trois parties) n’en est pas moins un cours à part entière et peut être considéré comme une base solide d’algèbre linéaire pour tout étudiant intéressé par l’apprentissage de cette matière.

Bien que les vidéos constituent le coeur du cours, des exercices de type QCM (Questions à choix multiples) ainsi que des séries au format PDF seront disponibles chaque semaine, ainsi que des corrigés appropriés. Plus précisément, les séries d’exercices seront accompagnées d’un corrigé au format PDF et certains problèmes bénéficieront d’une correction détaillée en vidéo, dans laquelle l’un des enseignants présentera la solution, étape par étape. Finalement, chaque vidéo de cours sera suivie d’un quiz, dont le but est de tester le degré d’assimilation des connaissances acquises.

Le cours est organisé en dix chapitres dans lesquels une approche très détaillée des concepts théoriques est proposée, ainsi que de multiples exemples illustratifs :

1) Systèmes d’équations linéaires.

2) Algèbre matricielle.

3) Espaces vectoriels.

4) Bases et dimensions.

5) Applications linéaires.

6) Matrices et applications linéaires.

7) Déterminants.

8) Vecteurs propres, valeurs propres, diagonalisation.

9) Produits scalaires et espaces euclidiens.

10) Matrices orthogonales et matrices symétriques.

Cette première partie du cours sera dévouée à l’étude des quatre premiers chapitres cités plus haut. Aucune connaissance particulière n’est requise pour comprendre les concepts abordés dans ce MOOC, mais il est conseillé de travailler régulièrement et de manière assidue, de façon à ne pas prendre de retard lors de l’apprentissage de la matière.

预备知识

Baccalauréat/maturité fédérale maîtrise de l'algèbre enseignée au lycée/gymnase.

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2020 MOOC.CN 慕课改变你,你改变世界