近似算法 1

Approximation Algorithms Part I

This course assumes knowledge of a standard undergraduate Algorithms course, and particularly emphasizes algorithms that can be designed using linear programming, a favorite and amazingly successful technique in this area.

巴黎高等师范学院

分享

  • 分类: 计算机
  • 平台: Coursera
  • 语言: 英语

关于此课程: Approximation algorithms, Part I

How efficiently can you pack objects into a minimum number of boxes? How well can you cluster nodes so as to cheaply separate a network into components around a few centers? These are examples of NP-hard combinatorial optimization problems. It is most likely impossible to solve such problems efficiently, so our aim is to give an approximate solution that can be computed in polynomial time and that at the same time has provable guarantees on its cost relative to the optimum.

This course assumes knowledge of a standard undergraduate Algorithms course, and particularly emphasizes algorithms that can be designed using linear programming, a favorite and amazingly successful technique in this area. By taking this course, you will be exposed to a range of problems at the foundations of theoretical computer science, and to powerful design and analysis techniques. Upon completion, you will be able to recognize, when faced with a new combinatorial optimization problem, whether it is close to one of a few known basic problems, and will be able to design linear programming relaxations and use randomized rounding to attempt to solve your own problem. The course content and in particular the homework is of a theoretical nature without any programming assignments.

This is the first of a two-part course on Approximation Algorithms.

授课大纲

WEEK 1
Vertex cover and Linear Programming
We introduce the course topic by a typical example of a basic problem, called Vertex Cover, for which we will design and analyze a state-of-the-art approximation algorithm using two basic techniques, called Linear Programming Relaxation and Rounding. It is a s… 更多

WEEK 2
Knapsack and Rounding
This module shows the power of rounding by using it to design a near-optimal solution to another basic problem: the Knapsack problem.

WEEK 3
Bin Packing, Linear Programming and Rounding
This module shows the sophistication of rounding by using a clever variant for another basic problem: bin packing. (This is a more advanced module.)

WEEK 4
Set Cover and Randomized Rounding
This module introduces a simple and powerful variant of rounding, based on probability: randomized rounding. Its power is applied to another basic problem, the Set Cover problem.

WEEK 5
Multiway Cut and Randomized Rounding
This module deepens the understanding of randomized rounding by developing a sophisticated variant and applying it to another basic problem, the Multiway Cut problem. (This is a more advanced module.)

声明:MOOC中国发布之课程均源自下列机构,版权均归他们所有。本站仅作报道收录并尊重其著作权益,感谢他们对MOOC事业做出的贡献!(排名不分先后)
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • 以及更多...

Copyright © 2008-2015 MOOC.CN 慕课改变你,你改变世界