大规模数据处理:系统与算法

Part of a 4-course series, the Data Science at Scale Specialization

华盛顿大学

分享

大规模数据处理:系统与算法
  • 分类: 计算机
  • 平台: Coursera
  • 语言: 英语

课程概况

Data analysis has replaced data acquisition as the bottleneck to evidence-based decision making — we are drowning in it. Extracting knowledge from large, heterogeneous, and noisy datasets requires not only powerful computing resources, but the programming abstractions to use them effectively. The abstractions that emerged in the last decade blend ideas from parallel databases, distributed systems, and programming languages to create a new class of scalable data analytics platforms that form the foundation for data science at realistic scales.

In this course, you will learn the landscape of relevant systems, the principles on which they rely, their tradeoffs, and how to evaluate their utility against your requirements. You will learn how practical systems were derived from the frontier of research in computer science and what systems are coming on the horizon. Cloud computing, SQL and NoSQL databases, MapReduce and the ecosystem it spawned, Spark and its contemporaries, and specialized systems for graphs and arrays will be covered.

You will also learn the history and context of data science, the skills, challenges, and methodologies the term implies, and how to structure a data science project. At the end of this course, you will be able to:

Learning Goals:
1. Describe common patterns, challenges, and approaches associated with data science projects, and what makes them different from projects in related fields.
2. Identify and use the programming models associated with scalable data manipulation, including relational algebra, mapreduce, and other data flow models.
3. Use database technology adapted for large-scale analytics, including the concepts driving parallel databases, parallel query processing, and in-database analytics
4. Evaluate key-value stores and NoSQL systems, describe their tradeoffs with comparable systems, the details of important examples in the space, and future trends.
5. “Think” in MapReduce to effectively write algorithms for systems including Hadoop and Spark. You will understand their limitations, design details, their relationship to databases, and their associated ecosystem of algorithms, extensions, and languages.
write programs in Spark
6. Describe the landscape of specialized Big Data systems for graphs, arrays, and streams

大规模数据处理:系统与算法 is course 1 of 4 in the Data Science at Scale Specialization.

This Specialization covers intermediate topics in data science. You will gain hands-on experience with scalable SQL and NoSQL data management solutions, data mining algorithms, and practical statistical and machine learning concepts. You will also learn to visualize data and communicate results, and you’ll explore legal and ethical issues that arise in working with big data. In the final Capstone Project, developed in partnership with the digital internship platform Coursolve, you’ll apply your new skills to a real-world data science project.

授课教师

Bill Howe
Director of Research
Scalable Data Analytics

课程大纲

Week 1 Data Science Context and Concepts

Lesson 1: Examples and the Diversity of Data Science
Lesson 2: Working Definitions of Data Science
Lesson 3: Characterizing this Course
Lesson 4: Related Topics
Lesson 5 : Course Logistics
Assignment 1: Twitter Sentiment Analysis
Assignment: Twitter Sentiment Analysis

Week 2 Relational Databases and the Relational Algebra

Lesson 6: Principles of Data Manipulation and Management
Lesson 7: Relational Algebra
Lesson 8: SQL for Data Science
Lesson 9: Key Principles of Relational Databases
Assignment 2: SQL
Assignment: SQL for Data Science Assignment

Week 3 MapReduce and Parallel Dataflow Programming

Lesson 10: Reasoning about Scale
Lesson 11: The MapReduce Programming Model
Lesson 12: Algorithms in MapReduce
Lesson 13: Parallel Databases vs. MapReduce
Assignment 3: MapReduce
Assignment: Thinking in MapReduce

Week 4 NoSQL: Systems and Concepts Graph Analytics

Lesson 14: What problems do NoSQL systems aim to solve?
Lesson 15: Early key-value systems and key concepts
Lesson 16: Document Stores and Extensible Record Stores
Lesson 17: Extended NoSQL Systems
Lesson 18: Pig: Programming with Relational Algebra
Lesson 19: Pig Analytics
Lesson 20: Spark
Lesson 21: Structural Tasks
Lesson 22: Traversal Tasks
Lesson 23: Pattern Matching Tasks and Graph Query
Lesson 24: Recursive Queries
Lesson 24: Representations and Algorithms

声明:MOOC中国收录之课程均源自下列机构,版权均归他们所有。本站仅作报道并尊重其著作权益,感谢他们对MOOC事业做出的贡献!(排名不分先后)
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc

Copyright © 2008-2015 MOOC.CN 慕课改变你,你改变世界