发展我们未来的食物:农作物

Growing our Future Food: Crops

如何在不耗光地球资源储备的前提下喂饱世界上的人类?-了解农作物生产的基本知识并且开拓新的机遇。

荷兰瓦赫宁根大学

edX

经济

普通(中级)

6 周

  • 英语
  • 495

课程概况

Feeding nine billion people in 2050 without exhausting the planetary reserves is perhaps the greatest challenge mankind has ever faced. This environmental studies course will examine the principles of production ecology and the ‘availability pillar’ of global food security that lie at the heart of food production, which can be applied to both crops and animal production. This course will discuss why yields in some parts of the world are lagging behind and identify the agro-ecological drivers that shape the wide diversity of production systems.

Furthermore, key issues relating to the closing of yield gaps and the difference in visions of sustainability will be explored.

This online course will be of great interest to international students and those with varied educational backgrounds, both professionally and culturally, to enrich their views and action perspectives related to global food security and food systems. Professor Ken E. Giller will introduce learners to crop production and underlying bio-physical principles in order to identify constraining factors in yield formation. He will explain how to assess yield gaps at the level of fields and production systems around the world, contributing to efficient resource management. Wageningen University and Research, through its unique systems-based approach to food systems, adds the phase of primary production to the broad context of global food security.

你将学到什么

Value the main issues related to global food production and consumption

Regional differences between developed and developing countries

Understand how food crop production can be influenced by changing the availability of water and nutrients and by measures suppressing pests, diseases and weeds

Identify the processes related to food crop production that cause major environmental problems and evaluate measures to solve and prevent those problems

Assess yield gaps of food crops in different geographical regions

Judge innovations in food crop production on their merits for the rural population in the different geographical regions

课程大纲

Week 1: Introduction
This first week we are setting the scene for the global food situation today and projected demand and supply options tomorrow. Covering the four pillars of global food systems, we will zoom in on availability issues, and more in particular on crop production, as central theme of this course. Photosynthesis plays a key role in this process, turning solar light into food, which fuels mankind. Analogously to physical principles applied in building houses, you’ll be acquainted to the bio-physical principles in growing crops.

Week 2: Potential production
Potential production is the simplest representation of crop growth, defined by the crop's genetic potential and the ambient growth factors radiation, temperature and carbon dioxide concentration in the air. Under perfect crop management, with no limitation of water and nutrients, and a weed, pathogen and pest free environment, crops reach their potential production.

This week focuses on the conversion of carbon dioxide into plant biomass as powered by solar radiation, with temperature as modifying factor. Based on variation in solar radiation and temperature around the globe, you’ll be able to calculate potential crop yields for different locations.

Week 3: Water limited production
In the process of fixing carbon dioxide from the air into biomass, crops inevitably lose water by transpiration. When transpired water from the leaf surface is not adequately replenished through water uptake by the roots, crop production becomes water-limited, resulting in lower yields.

Accounting for the evaporative demand of the air and water availability to the crop, water-limited production can be assessed. Conversely, to reach potential yield, you may determine the amount of water required through irrigation, as a yield increasing measure.

Week 4: Nutrient limited production
In addition to water, nutrients are essential to crop production to support physiological processes, like photosynthesis. Various nutrients are absorbed from the soil by the roots. When nutrient availability falls short, production becomes nutrient-limited. In that situation nutrient application by manure or artificial fertilizers is a yield increasing measure..

Week 5: Actual production
Actual crop production refers a situation where production is further reduced by effects of weed, pests (insects, mites, nematodes, rodents, and birds), diseases (fungi, bacteria, viruses) and/or pollutants. This introduces an extra level of complexity in plant production.

In spite of intensive crop protection measures in some parts of the world, the actual production is the common production situation for the majority of the world's agricultural production systems. We will look at how weeds, and pests and diseases affect crop yields and what measures can be taken to prevent losses.

Week 6: Synthesis
Having tackled the three distinguished production situations separately in the previous weeks, we now come back to complete the diagram reflecting the 'principles of production ecology'. Hopefully, it means more to you now and you can use it in analysing the impact of genetics, environment and management on crop yields, as will be discussed in this synopsis.

声明:MOOC中国发布之课程均源自下列机构,版权均归他们所有。本站仅作报道收录并尊重其著作权益,感谢他们对MOOC事业做出的贡献!(排名不分先后)
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • 以及更多...

© 2008-2018 MOOC.CN 慕课改变你,你改变世界