应用数据科学专项课程

Applied Data Science

获得数据科学职业的实践技能。学习Python,分析和可视化数据。将您的技能应用于数据科学和机器学习。

IBM

Coursera

计算机

简单(初级)

1 个月

  • 英语, 德语, 其他
  • 503

课程概况

This is an action-packed specialization is for data science enthusiasts who want to acquire practical skills for real world data problems. It appeals to anyone interested in pursuing a career in Data Science, and already has foundational skills (or has completed the Introduction to Applied Data Science specialization). You will learn Python – no prior programming knowledge necessary. You will then learn data visualization and data analysis. Through our guided lectures, labs, and projects you’ll get hands-on experience tackling interesting data problems. Make sure to take this specialization to solidify your Python and data science skills before diving deeper into big data, AI, and deep learning.

Upon completing all courses in the specialization and receiving the Specialization certificate, you will also receive an IBM Badge recognizing you as a Specialist in Applied Data Science.

LIMITED TIME OFFER: Subscription is only $39 USD per month and gives you access to graded materials and a certificate.

你将学到什么

数据分析

Python编程

数据可视化(DataViz)

Matplotlib

包含课程

课程1
Python for Data Science

This introduction to Python will kickstart your learning of Python for data science, as well as programming in general. This beginner-friendly Python course will take you from zero to programming in Python in a matter of hours. Module 1 - Python Basics o Your first program o Types o Expressions and Variables o String Operations Module 2 - Python Data Structures o Lists and Tuples o Sets o Dictionaries Module 3 - Python Programming Fundamentals o Conditions and Branching o Loops o Functions o Objects and Classes Module 4 - Working with Data in Python o Reading files with open o Writing files with open o Loading data with Pandas o Numpy Finally, you will create a project to test your skills. LIMITED TIME OFFER: Subscription is only $39 USD per month for access to graded materials and a certificate.

课程2
Data Analysis with Python

Learn how to analyze data using Python. This course will take you from the basics of Python to exploring many different types of data. You will learn how to prepare data for analysis, perform simple statistical analysis, create meaningful data visualizations, predict future trends from data, and more! Topics covered: 1) Importing Datasets 2) Cleaning the Data 3) Data frame manipulation 4) Summarizing the Data 5) Building machine learning Regression models 6) Building data pipelines Data Analysis with Python will be delivered through lecture, lab, and assignments. It includes following parts: Data Analysis libraries: will learn to use Pandas, Numpy and Scipy libraries to work with a sample dataset. We will introduce you to pandas, an open-source library, and we will use it to load, manipulate, analyze, and visualize cool datasets. Then we will introduce you to another open-source library, scikit-learn, and we will use some of its machine learning algorithms to build smart models and make cool predictions. If you choose to take this course and earn the Coursera course certificate, you will also earn an IBM digital badge. LIMITED TIME OFFER: Subscription is only $39 USD per month for access to graded materials and a certificate.

课程3
Data Visualization with Python

"A picture is worth a thousand words". We are all familiar with this expression. It especially applies when trying to explain the insight obtained from the analysis of increasingly large datasets. Data visualization plays an essential role in the representation of both small and large-scale data. One of the key skills of a data scientist is the ability to tell a compelling story, visualizing data and findings in an approachable and stimulating way. Learning how to leverage a software tool to visualize data will also enable you to extract information, better understand the data, and make more effective decisions. The main goal of this Data Visualization with Python course is to teach you how to take data that at first glance has little meaning and present that data in a form that makes sense to people. Various techniques have been developed for presenting data visually but in this course, we will be using several data visualization libraries in Python, namely Matplotlib, Seaborn, and Folium. LIMITED TIME OFFER: Subscription is only $39 USD per month for access to graded materials and a certificate.

课程4
Applied Data Science Capstone

This capstone project course will give you a taste of what data scientists go through in real life when working with data. You will learn about location data and different location data providers, such as Foursquare. You will learn how to make RESTful API calls to the Foursquare API to retrieve data about venues in different neighborhoods around the world. You will also learn how to be creative in situations where data are not readily available by scraping web data and parsing HTML code. You will utilize Python and its pandas library to manipulate data, which will help you help you refine your skills for exploring and analyzing data. Finally, you will be required to use the Folium library to great maps of geospatial data and to communicate your results and findings. If you choose to take this course and earn the Coursera course certificate, you will also earn an IBM digital badge upon successful completion of the course. LIMITED TIME OFFER: Subscription is only $39 USD per month for access to graded materials and a certificate.

预备知识

无需先前的数据科学或编程经验。但建议您掌握一些关于数据科学的基础知识,这些知识可以通过IBM的应用数据科学入门专项课程来开发。

声明:MOOC中国发布之课程均源自下列机构,版权均归他们所有。本站仅作报道收录并尊重其著作权益,感谢他们对MOOC事业做出的贡献!(排名不分先后)
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • 以及更多...

© 2008-2018 MOOC.CN 慕课改变你,你改变世界